Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0298117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573916

RESUMO

Selection of adjuvant to be combined with the antigen is an extremely important point for formulating effective vaccines. The aim of this study was to evaluate reactogenicity, levels of IgM, IgG and subclasses (IgG1, IgG2b and IgG3), and protection elicited by vaccine formulations with association of chitosan coated alginate or Montanide ISA 61 with γ-irradiated Brucella ovis. The alginate/chitosan biopolymers as well as the Montanide ISA 61 emulsion elicited intense and long-lasting local response, especially when associated with the antigen. However, Montanide ISA 61 induced less intense reactogenicity when compared to alginate/chitosan. Furthermore, γ-irradiated B. ovis with Montanide ISA 61 induced higher levels of IgG2b an important marker of cellular immune response. In conclusion, Montanide ISA 61 resulted in milder reactogenicity when compared to the alginate/chitosan, while it induced a high IgG2b/IgG1 ratio compatible with a Th1 profile response.


Assuntos
Quitosana , Óleo Mineral , Vacinas , Animais , Camundongos , Ovinos , Adjuvantes de Vacinas , Cápsulas , Adjuvantes Imunológicos/farmacologia , Imunoglobulina G , Camundongos Endogâmicos BALB C
2.
Altern Lab Anim ; 52(1): 60-68, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061994

RESUMO

The Brazilian National Network of Alternative Methods (RENAMA), which is linked to the Ministry of Science, Technology and Innovation, is currently comprised of 51 laboratories from CROs, academia, industry and government. RENAMA's aim is to develop and validate new approach methodologies (NAMs), as well as train researchers and disseminate information on their use - thus reducing Brazilian, and consequently Latin American, dependence on external technology. Moreover, it promotes the adoption of NAMs by educators and trained researchers, as well as the implementation of good laboratory practice (GLP) and the use of certified products. The RENAMA network started its activities in 2012, and was originally comprised of three central laboratories - the National Institute of Metrology, Quality and Technology (INMETRO); the National Institute of Quality Control in Health (INCQS); and the National Brazilian Biosciences Laboratory (LNBio) - and ten associated laboratories. In 2022, RENAMA celebrated its 10th anniversary, a milestone commemorated by the organisation of a meeting attended by different stakeholders, including the RENAMA-associated laboratories, academia, non-governmental organisations and industry. Ninety-six participants attended the meeting, held on 26 May 2022 in Balneário Camboriú, SC, Brazil, as part of the programme of the XXIII Brazilian Congress of Toxicology 2022. Significant moments of the RENAMA were remembered, and new goals and discussion themes were established. The lectures highlighted recent innovations in the toxicological sciences that have translated into the assessment of consumer product safety through the use of human-relevant NAMs instead of the use of existing animal-based approaches. The challenges and opportunities in accepting such practices for regulatory purposes were also presented and discussed.


Assuntos
Aniversários e Eventos Especiais , Laboratórios , Animais , Humanos , Brasil
3.
Colloids Surf B Biointerfaces ; 196: 111371, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32980571

RESUMO

The purpose of this study was to develop tea tree oil (TTO)-loaded chitosan-poly(ε-caprolactone) core-shell nanocapsules (NC-TTO-Ch) aiming the topical acne treatment. TTO was analyzed by gas chromatography-mass spectrometry, and nanocapsules were characterized regarding mean particle size (Z-average), polydispersity index (PdI), zeta potential (ZP), pH, entrapment efficiency (EE), morphology by Atomic Force Microscopy (AFM), and anti-Cutibacterium acnes activity. The main constituents of TTO were terpinen-4-ol (37.11 %), γ-terpinene (16.32 %), α-terpinene (8.19 %), ρ-cimene (6.56 %), and α-terpineol (6.07 %). NC-TTO-Ch presented Z-average of 268.0 ± 3.8 nm and monodisperse size distribution (PdI < 0.3). After coating the nanocapsules with chitosan, we observed an inversion in ZP to a positive value (+31.0 ± 1.8 mV). This finding may indicate the presence of chitosan on the nanocapsules' surface, which was corroborated by the AFM images. In addition, NC-TTO-Ch showed a slightly acidic pH (∼5.0), compatible with topical application. The EE, based on Terpinen-4-ol concentration, was approximately 95 %. This data suggests the nanocapsules' ability to reduce the TTO volatilization. Furthermore, NC-TTO-Ch showed significant anti-C. acnes activity, with a 4× reduction in the minimum inhibitory concentration, compared to TTO and a decrease in C. acnes cell viability, with an increase in the percentage of dead cells (17 %) compared to growth control (6.6 %) and TTO (9.7 %). Therefore, chitosan-poly(ε-caprolactone) core-shell nanocapsules are a promising tool for TTO delivery, aiming at the activity against C. acnes for the topical acne treatment.


Assuntos
Quitosana , Nanocápsulas , Óleo de Melaleuca , Poliésteres , Óleo de Melaleuca/farmacologia
4.
Biologicals ; 66: 9-16, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32561214

RESUMO

Bone tissue-derive biomaterials have become of great interest to treat diseases of the skeletal system. Biological scaffolds of demineralized and decellularized extracellular matrices (ECM) have been developed and one of these options are ECM hydrogels derived from bovine bone. Nanomaterials may be able to regulate stem cell differentiation due to their unique physical-chemical properties. The present work aimed to evaluate the osteoinductive effects of ECM hydrogels associated with barium titanate nanoparticles (BTNP) on dental pulp cells derived from exfoliated teeth. The addition of BTNP in the ECM derived hydrogel did not affect cell proliferation and the formation of bone nodules. Furthermore, it increased the expression of bone alkaline phosphatase. The results demonstrated that the nanobiocomposites were able to promote the osteogenic differentiation, even in the absence of chemical inducing factors for osteogenic differentiation. In conclusion, bovine bone ECM hydrogel combined with BTNP presented and increased expression of markers of osteogenic differentiation in the absence of chemical inducing factors.


Assuntos
Compostos de Bário/farmacologia , Proliferação de Células/efeitos dos fármacos , Matriz Extracelular , Hidrogéis/farmacologia , Osteogênese/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Titânio/farmacologia , Fosfatase Alcalina/efeitos dos fármacos , Fosfatase Alcalina/genética , Animais , Técnica de Desmineralização Óssea , Proteína Morfogenética Óssea 2/efeitos dos fármacos , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 4/efeitos dos fármacos , Proteína Morfogenética Óssea 4/genética , Bovinos , Polpa Dentária/citologia , Glicosaminoglicanos/metabolismo , Humanos , Nanopartículas Metálicas , Microscopia Eletrônica de Varredura , Osteogênese/genética , Reologia , Análise Espectral Raman , Células-Tronco/metabolismo , Células-Tronco/ultraestrutura , Engenharia Tecidual/métodos , Tecidos Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...